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1 Abstract

Genetic Stock Identification (GSI) allows estimation of stock composition, including untagged

stocks. The required sample size per sampling stratum depends on the commonness/rarity of the

stock(s) of interest and, when the stock composition of the landings itself is of interest rather than

the ocean mixed stock aggregate, on total catch as well. We present sample sizes required to

achieve specified precisions, detect rare stocks, and test the significance of differences between

proportions. For the ocean mixed stock aggregate, sampling 800 fish per stratum suffices to es-

timate stock proportions ≥ 3% with a coefficient of variation ≤ 20% and has a high (> 99.9%)

probability of detecting stocks comprising ≥ 1% of the mixed stock, but this sample size does not

yield precise estimates of small stock proportions and may fail to detect rare stocks. To precisely

estimate smaller proportions, required sample size scales approximately inversely with the propor-

tion, i.e., halving the target proportion requires doubling the sample size. For a given proportion,

increased precision also comes at a greater cost as the required sample size scales approximately

with the square of the desired precision, i.e., halving the target standard error requires quadrupling

the sample size. Smaller sample sizes suffice for estimating the stock composition of the landings

itself when total catch is low, but a high sampling fraction may be required. Statistical comparisons

between two proportions require larger sample sizes than estimating single proportions of similar

magnitude.
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2 Introduction

West coast salmon fisheries management requires understanding spatial and temporal patterns of

stock-specific distribution and fisheries impacts. To date, information used in management has

primarily come from the analysis of recoveries of coded-wire tags (CWT, Johnson 1990; OSP

1999). In addition to their use in management models (e.g., Goldwasser et al. 2001; O’Farrell

et al. 2012), CWT data have provided insight into stock-specific ocean distributions (Weitkamp

and Neely 2002; Trudel et al. 2009; Weitkamp 2010), and the availability of multi-decade datasets

has allowed quantifying temporal variability in size-at-age (Satterthwaite et al. 2012) and spatial

distribution (Satterthwaite et al. 2013). However, the CWT methodology is limiting in that only

very rarely are fish tagged outside of hatcheries, and for some stocks of interest there is no tagging

program at all. In addition, recovering a CWT from a live tagged fish is lethal, which may preclude

its use in determining the stock composition of fishery discards, for example. Currently, approxi-

mately 20% of all west coast ocean salmon landings are examined for the recovery of CWTs, and

to obtain estimates of harvest and fishing effort stratified by time, area, and fishery (Johnson 1990;

OSP 1999).

Genetic stock identification (GSI) methods have now been sufficiently developed (Seeb et al.

2007) to consider their use as a complement to the CWT program. GSI techniques rely on genetic

markers, such as microsatellites or single-nucleotide polymorphisms, to probabilistically assign

each sampled fish to a baseline set of potential genetic stock units (Seeb et al. 2007). The resolution

of GSI thus includes the untagged stocks, as long as they are individually represented in the set of

baseline stocks. In addition, with GSI every fish sampled is potentially informative with respect

to stock composition, not just tagged individuals. Thus, adequate sample sizes might be possible

using fishery-independent sampling methods. Finally, collecting tissue from a live sampled fish

for genotyping purposes is non-lethal, although released sample fish are subject to an associated

release mortality rate estimated to be 26% and 19% for west coast ocean salmon commercial and

recreational fishing methods, respectively (STT 2000).

While GSI has some notable benefits and addresses certain topics that CWT methods cannot,
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there are also drawbacks to the use of GSI for estimation of stock composition. In particular, the

resolution of the current set of baseline genetic stock units (“reporting groups”) does not allow for

unambiguous discrimination of several stocks that are important for west coast fisheries manage-

ment. With respect to California stocks, for example, Klamath River fall and spring run Chinook

salmon cannot be distinguished, nor can Sacramento River fall, Sacramento River late-fall, San

Joaquin fall, and Feather River Hatchery spring run Chinook salmon (Seeb et al. 2007). Second,

there is the possibility of stock assignment errors, and of individual samples that either do not as-

sign to any stock with high probability, or are unusable due to problems with tissue collection and

preservation. Third, GSI alone cannot provide the age of the sampled fish, which is essential for

many fishery assessments.

The greatest value of GSI data may lie in providing insight about untagged stocks for which

no other information on ocean harvest is available. Since most highly abundant stocks are sup-

plemented by hatchery production with tagging programs, untagged stocks are typically lower-

abundance stocks that make up small proportions of the ocean harvest. Thus to realize their full

potential, GSI sampling programs must use adequate sample sizes for acceptable statistical perfor-

mance when estimating small proportions.

GSI sample size recommendations are developed in this paper for the estimation of stock com-

position of the ocean mixed stock aggregate and of fishery landings based on a clearly defined set

of potential statistical objectives. These objectives include:

1. The probability of detecting at least k individuals of a given stock meets a specified criterion.

2. The coefficient of variation of an estimated stock proportion meets a specified criterion.

3. The standard error of an estimated stock proportion meets a specified criterion.

4. The power to detect differences between two stock proportions meets a specified criterion.

The set of statistical objectives considered is defined in terms of a particular stock and sampling

stratum of interest. The objectives are similar to those proposed by the Pacific Salmon Commission
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GSI modelling and sampling workgroup (Mohr 2007); however, we additionally consider them in

the context of sampling without replacement. For a given application it may be desirable to achieve

one or more of these objectives, or it may be desirable to consider the entire set of objectives in

designing a broad-based sampling plan.

Objective 1, evaluated for k = 1, concerns the ability to detect a stock given its presence,

but larger values of k may be of interest for analyses of stock-specific characteristics requiring a

minimum number of individuals. Objectives 2 and 3 both involve the precision of stock proportion

estimates (and thus for fishery landings the precision of catch estimates, given known total catch),

however Objective 2 considers error in relative terms whereas Objective 3 does so in absolute

terms. Thus, Objective 2 may be more relevant for rare stocks. Objective 4 is relevant to the

statistical comparison of proportions between strata or substrata for a given stock, or between

stocks within a stratum.

The sample size necessary to satisfy these objectives depends on the magnitude of the stock

proportion of interest and, for estimating the stock composition of landings, the stratum total catch.

It is assumed here that all fish sampled for GSI are correctly identified to their stock of origin. To

the extent that some samples cannot be successfully processed or genotyped, or are misclassified,

the necessary sample size will be greater than that indicated by our results.

3 Methods

Denote by n the sample size, by Y the number of the stock of interest in the sample, and by p̂ = Y
n

the sample estimate of the stock proportion of interest, p (see Table 1 for the notation used in this

paper). To determine the n necessary to satisfy the objectives, it is further necessary to specify the

sampling distribution of Y that the estimated proportion is based on. The sampling distribution of

Y in turn depends on whether the sampling is with or without replacement, and secondly what type

of selection scheme is used in the with or without replacement sampling design. Regarding the

latter, for the purposes of this paper we assume that the selection scheme used is “simple random”
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Table 1. Notation used in this paper.

Symbol Description

α type-I error rate
β type-II error rate; 1−β is the statistical power
CVp̂ coefficient of variation of p̂
n sample size
N total landings
p proportion of stock of interest
p̂ sample estimate of p
Qk probability that at least k individuals from stock of interest are sampled
σ2

p̂ sampling variance of p̂
Y number of stock of interest in sample of size n
Zr standard normal distribution rth quantile (e.g., Z0.975 = 1.96)

(all individuals have an equal probability of being included in the sample) in both the with and

without replacement designs.

Whether to assume with or without replacement sampling for the purpose of sample size plan-

ning depends, in part, on what the frame of reference is for the stock proportion estimate. Is it

the stock proportion in the ocean mixed stock aggregate for which the estimate is desired, or is it

the stock proportion in the landings itself? For the former, the sampling scheme can effectively be

considered as with replacement sampling, regardless of whether the GSI sample is taken from fish-

ery landings or through a fishery-independent scientific survey, since in both instances the number

of fish sampled for GSI will likely be less than 5% of the ocean mixed stock aggregate.1 In this

case, the sampling distribution of Y is binomial(n, p), p̂ is an unbiased estimator of p, and

1Of course, strictly speaking this does constitute without replacement sampling assuming that a fish sampled is
not released and subject to resampling. However, at sampling fractions less than, say 5%, the statistical properties
of without replacement sampling are very closely approximated by those of with replacement sampling. Regardless,
application of the hypergeometric distribution in this situation would require specifying the size of the stratum-specific
ocean population being sampled, which will of course be unknown.
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binomial

Prob(Y = y) =
(

n
y

)
py(1− p)n−y, for 0≤ y≤ n, 0≤ p≤ 1, (1)

σ
2
p̂ =

p(1− p)
n

, (2)

for integer-valued Y (Johnson et al. 1993; Cochran 1977). On the other hand, if the target of

estimation is limited to the stock composition of the landings itself, the sampling fraction may

exceed 5% in which case the sampling distribution of Y is hypergeometric(N,n, p), p̂ is an unbiased

estimator of p, and

hypergeometric

Prob(Y = y) =

(N p
y

)(N(1−p)
n−y

)(N
n

) , for max(0,n−N(1− p))≤ y≤min(n,N p), (3)

for p =
( 0

N ,
1
N ,

2
N , . . . ,

N
N

)
,

σ
2
p̂ =

p(1− p)
n

· N−n
N−1

, (4)

for integer-valued Y and N (Johnson et al. 1993; Cochran 1977).

Note that a GSI sample taken from the landings might be used for either purpose, and while

the estimated proportion p̂ would be the same in either case, the sampling variance σ2
p̂ would be

less for the without replacement scheme. The sampling variance is reduced in both schemes by

increasing n, but in without replacement sampling σ2
p̂ is further reduced by an increased sampling

fraction, n
N . In the limit, if all of the landings were sampled, the landing composition would be

known exactly, but the composition of the ocean mixed stock aggregate would not.

The formulas above make clear that σ2
p̂ depends on n and p. In the case of without replacement

sampling it also depends on N, but primarily through the sampling fraction: N−n
N−1 ≈ 1− n

N . Thus,

for small n
N the formulas are nearly equivalent. For both distributions, the maximum of σ2

p̂ given n

and N occurs when p = 0.5, and σ2
p̂ approaches 0 as p approaches 0 or 1.

For sample size planning purposes, the formulas above may be rearranged to give n as a func-
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tion of Prob(Y = y) or σ2
p̂ for a specific value of p and N (if applicable), permitting evaluation

of Objectives 1–4. We do this for with replacement (binomial) and without replacement (hyper-

geometric) sampling by evaluating the smallest value of n necessary to meet the objectives over

a range of p. We focused primarily on values of p ≤ 0.05 because this likely characterizes most

Chinook salmon stocks found off California (Winans et al. 2001), and because the level of n nec-

essary to satisfy all but one of the considered objectives increases with decreasing p. For p smaller

than 0.005, the necessary n increases steeply for several of the objectives, limiting the usefulness

of our graphical presentation of the results of applying these formulas for n. Nevertheless, stock

proportions less than 0.005 may indeed be of interest, e.g., when evaluating rare stocks, or stocks

on the periphery of their geographic range.

For hypergeometric sampling, we evaluate sample size requirements over the range of p for

N = 100, 500, or 1000, noting that with larger N the results approach those for binomial sampling.

With hypergeometric sampling, p is a discrete-valued variable (equation (3)). This discreteness of

p, and hence of the metric being evaluated, will be evident in the graphical presentation of these

results, most notably for the N = 100 figure panels where the plotted range of p≤ 0.05 consists of

only five non-zero values, p = (0.01,0.02,0.03,0.04,0.05).

4 Results

4.1 Objective 1

The first objective is that n be sufficient to ensure, with probability Qk, that the sample will contain

at least k fish of the stock of interest. That is, Qk = Prob(Y ≥ k) = 1− Prob(Y < k). In this

section, we evaluate this for the case of simple detection (k = 1); larger values of k are evaluated

in Appendix A. For binomial sampling with k = 1, appealing to equation (1)

Q1 = 1−Prob(Y = 0) = 1− (1− p)n, (5)
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and solving for n gives

n =
log(1−Q1)

log(1− p)
. (6)

For hypergeometric sampling with k = 1, appealing to equation (3)

Q1 = 1−Prob(Y = 0) = 1−
(N(1−p)

n

)(N
n

) , (7)

from which n can be approximated as (Fosgate 2009)

n =
(

1− (1−Q1)
1

N p

)(
N− N p−1

2

)
. (8)

An exact solution for n can be obtained as described in Appendix A, however, over the range of N,

p, and Q1 examined in Figure 1, the exact value differed from the approximation by no more than

1.

Figure 1 shows the n necessary to yield a specified Q1, depending on p, under both binomial

sampling and hypergeometric sampling for select values of N. Mohr (2007) suggests that Q1 be

at least 0.999 for all p ≥ 0.01. Since for any particular value of Q1 the required n increases as p

approaches 0, the minimum n that will meet this condition is that which satisfies an Objective 1

criterion of Q1 = 0.999 for p = 0.01. This is achieved with an n of 688 under binomial sampling,

497 for hypergeometric sampling with N = 1000 (50% sampling), 373 for N = 500 (75% sam-

pling), and 100 for N = 100 (100% sampling). For larger N, the hypergeometric results approach

the binomial results.

Note that in equation (6), if Q1 is held constant, the required n scales with −1
log(1−p) (negative

since the numerator is the log of a quantity less than 1). For “small” p, log(1− p)≈−p (first

term of Taylor expansion). Thus the required n for binomial sampling scales with 1
p , i.e., halving

the target proportion requires doubling n. Sample sizes can be approximated quite well via this

method for p < 0.01, e.g., for Q1 = 0.999 the required n for p = 0.01 is 688 while the required n

for p = 0.005 is 1379.
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Figure 1. Sample size (contours) required to ensure, with probability Q1, that the sample will contain
at least one fish of the stock of interest, given the stock proportion p. Top-left panel presents results
for binomial sampling; remaining panels give hypergeometric results for total landings of 1000, 500, and
100 fish, respectively. In the hypergeometric panels, p less than the minimum value possible ( 1

N ) for
Q1 are block-shaded in grey, and for contoured values of n the possible (n, p) combinations appear as
black dots connected by line segments. Large dot marks criterion described in the text (Q1 = 0.999 for
p = 0.01).
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Under binomial sampling, for a fixed n ≥ 30, a decrease in Q1 from 0.999 to 0.95 results in

a 55% decrease in the minimum estimable proportion, while a change in Q1 from 0.999 to 0.99

results in a 32% decrease. Conversely, as Q1 surpasses 0.999, the minimum proportion that can be

estimated for a given sample size increases quickly. For p > 0.02, sample sizes as small as 200

satisfy this objective over a wide range of Q1 values (Figure 1).

For k > 1, the required n increases as described in Appendix A.

4.2 Objective 2

The second objective is that n be sufficient to ensure that the coefficient of variation of p̂,

CVp̂ =
σ p̂

p
, (9)

a measure of relative precision, does not exceed a specified level. That is, the standard error of

p̂ should not exceed (100 ·CVp̂)% of p. For binomial sampling, substituting the square root of

equation (2) into equation (9) and solving for n gives

n =
1− p

p ·CV 2
p̂
. (10)

For hypergeometric sampling, substituting the square root of equation (4) into equation (9) and

solving for n gives

n =
N

1+CV 2
p̂

(
(N−1)p

1−p

) . (11)

Figure 2 shows the n necessary to yield a specified CVp̂, depending on p, under both binomial

sampling and hypergeometric sampling for select values of N. Mohr (2007) suggests that CVp̂ be

at most 0.2 for all p ≥ 0.03. Since for any particular value of CVp̂ the required n increases as p

approaches 0, the minimum n that will meet this condition is that which satisfies an Objective 2

criterion of CVp̂ = 0.2 for p = 0.03. This is achieved with an n of 809 under binomial sampling,

448 for hypergeometric sampling with N = 1000 (45% sampling), 310 for N = 500 (62% sam-

10
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Figure 2. Sample size (contours) required to yield a specified CVp̂, given the stock proportion p. Top-
left panel presents results for binomial sampling; remaining panels give hypergeometric results for total
landings of 1000, 500, and 100 fish, respectively. In the hypergeometric panels, p less than the minimum
non-zero value possible ( 1

N ) are block-shaded in grey, and for contoured values of n the possible (n, p)
combinations appear as black dots connected by line segments. Large dot marks criterion described in
the text (CVp̂ = 0.2 for p = 0.03).
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pling), and 90 for N = 100 (90% sampling). For larger N, the hypergeometric results approach the

binomial results.

Note that for “small” p, equation (10) reduces to approximately 1
p·CV 2

p̂
and thus, as with Objec-

tive 1, for a fixed CVp̂, the required n for binomial sampling scales with 1
p , i.e., halving the target

proportion requires a doubling of n. Alternatively, for a fixed p, the required n scales with 1
CV 2

p̂
,

i.e., halving the target CVp̂ requires a quadrupling of n.

4.3 Objective 3

The third objective is that n be sufficient to ensure that the standard error of p̂, σ p̂, a measure

of absolute precision, does not exceed a specified level. Equivalently, assuming p̂ is normally

distributed, this n will be sufficient to ensure that the 95% confidence interval width for p does not

exceed 2 ·Z0.975 ·σp̂, or approximately 4 ·σ p̂. For binomial sampling, solving equation (2) for n

gives

n =
p(1− p)

σ2
p̂

. (12)

For hypergeometric sampling, solving equation (4) for n gives

n =
p(1− p)N

σ2
p̂(N−1)+ p(1− p)

. (13)

Figure 3 shows the n necessary to yield a specified σp̂, depending on p, under both binomial

sampling and hypergeometric sampling for select values of N. Mohr (2007) suggests that σp̂ be

at most 0.015 (which corresponds approximately to a 95% confidence interval width of 0.06) for

all p ≥ 0.01. Since for any particular value of σ p̂ the maximum n required occurs with p = 0.5,

the minimum n that will meet this condition is that which satisfies an Objective 3 criterion of

σp̂ = 0.015 for p = 0.5. This is achieved with an n of 1112 under binomial sampling, 527 for

hypergeometric sampling with N = 1000 (53% sampling), 346 for N = 500 (69% sampling), and

92 for N = 100 (92% sampling). For larger N, the hypergeometric results approach the binomial

results.

12
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Figure 3. Sample size (contours) required to yield a specified σ p̂, given the stock proportion p. Top-
left panel presents results for binomial sampling; remaining panels give hypergeometric results for total
landings of 1000, 500, and 100 fish, respectively. In the hypergeometric panels, p less than the minimum
non-zero value possible ( 1

N ) are block-shaded in grey, and for contoured values of n the possible (n, p)
combinations appear as black dots connected by line segments (for larger N,n appearing as a nearly
continuous line over the range displayed, 0≤ p≤ 0.5). Large dot marks criterion described in the text
(σ p̂ = 0.015 for p = 0.5).
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Note that in equation (12) the required n for fixed p scales with 1
σ2

p̂
, so, like Objective 2,

doubling the precision (halving σp̂) requires quadrupling n. Unlike the other objectives considered

in this paper, for a given σ p̂, n decreases as p approaches 0; although not shown, n also decreases as

p approaches 1. Thus, small (or large) proportions are actually easier to estimate under an absolute

precision criterion, than are proportions near 0.5. However, an acceptable standard error on a large

proportion may be unacceptably large for a small proportion.

4.4 Objective 4

The fourth objective is that n be sufficient to ensure, with probability 1−β , that a difference in

estimated proportions, p̂1− p̂2 > 0, will be statistically significant at a specified type-I error rate

(α , typically α = 0.05) if in fact p1− p2 > 0. This probability, 1−β , is also known as the “power”

of the statistical test. This objective is relevant to the statistical comparison of proportions between

strata or substrata (e.g., nearshore versus offshore) for a given stock, or between stocks within

a stratum. Since the frame of reference for such hypotheses is typically the ocean mixed stock

aggregate rather than the fishery landings, we assume independent binomial sampling for each

of the two proportions, and assume equal sample size, n1 = n2 = n. We used the approximation

provided by Casagrande et al. (1978) for the n required in this setting,

n =

A
(

1+
√

1+ 4d
A

)2

4d2 , (14)

where A =
(

Z1−α ·
√

2p(1−p)+Z1−β ·
√

p1(1−p1)+ p2(1−p2)
)2

, d = p1−p2, and p = p1+p2
2 .

Figure 4 shows the n necessary to yield a specified power, depending on p1 (the larger propor-

tion), for select values of the ratio p2
p1

. Mohr (2007) suggests that the power be at least 0.8 for all

p1 ≥ 0.03, assuming p2
p1
≤ 0.5 and α = 0.05. Since for any particular value of power the required

n increases as p1 approaches 0, and for fixed p1 as p2
p1

approaches 1, the minimum n that will

meet this condition is that which satisfies an Objective 4 criterion of power = 0.8 and α = 0.05 for
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p1 = 0.03 with p2
p1

= 0.5. This is achieved with an n of 1338 fish per stratum or substratum being

compared.

As with Objectives 1 and 2, the required n scales with the inverse of the stock proportions

being compared when these proportions are small. Comparison of the panels in Figure 4 reveals

large increases in the required n as the stock proportions being compared become more similar,

compared to relatively modest changes in the required n over the range of power explored for

a given (p1, p2 = p1 · p2
p1
). For example, for the criterion above (power = 0.8 and α = 0.05 for

p1 = 0.03), with p2
p1

= (0.3, 0.5, 0.7, 0.9) the required n is (627, 1338, 4012, 38703), whereas the

n required for power = (0.7, 0.9) is approximately (80%, 135%) of that required for power = 0.8,

and this scaling varies little as p2
p1

ranges between 0 and 1.

5 Discussion

The sample size requirements for any sampling program depend on the specific goals and ques-

tions the sampling is intended to address, as well as situation-specific constraints. Nevertheless,

the results presented in this paper can provide some guidance on the general utility of current and

proposed sampling schemes, as well as some sense of the potential benefits of increased sampling

and what is sacrificed by decreased sampling. The West Coast Salmon GSI Collaboration stated

a goal of successfully sampling 800 Chinook salmon from each fishery management area in Cali-

fornia and Oregon per month (Goldenberg and Fitzpatrick 2010). Thus, the sampling target of 800

fish per stratum is a reasonable starting point for discussion.

If the intent is to estimate the contribution of a single stock to the ocean mixed stock aggregate,

sampling 800 fish per stratum will have > 99.9% probability of detecting a stock with p as low as

0.01, allow estimation of proportions as small as 0.03 with CVp̂ ≤ 0.2, and yield a maximum σp̂ of

0.018 for p = 0.5. Sampling 800 fish per stratum or substratum will also yield a power of at least

80% (at α = 0.05) to detect differences between proportions, the smaller of which is no more than

half of the larger, when the larger proportion is ≥ 0.05. Sample size requirements for comparisons
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become much larger as the proportions become more similar. Thus, while a sample size of 800 fish

per stratum suffices to answer some interesting questions, it should be noted that strong inference

about rare stocks or about differences in their stock proportions requires more intensive sampling.

For example, a sample size of 800 fish would result in a CVp̂ of 0.5 for p = 0.005, worse yet

for smaller p. Below, we offer a rule of thumb to determine how much the sample size must be

increased to meet specific goals.

Objective 3 is unique among the set of objectives in that it depends on absolute rather than

relative precision, and as a result is more difficult to achieve for p = 0.5 rather than for small (or

large) p. Thus, Objective 3 may have limited relevance to studies where rare stocks are of interest.

For Objective 3, with any particular p, the required sample size simply scales with the inverse of

the square of the desired precision—that is, to halve the standard error the sample size must be

quadrupled. This also holds true for relative precision—for any particular p, the sample size must

be quadrupled to halve the CVp̂.

The remaining objectives become increasingly difficult to achieve as p becomes small. We are

able to offer a simple rule of thumb that approximates the potential benefits of increasing sample

size beyond the current standard of 800 fish per stratum. For these objectives, a “small p” approx-

imation can be applied where, once a sample size n adequate for a small p has been determined,

the sample size needed to reliably estimate an even smaller proportion, p′, can be readily approxi-

mated as n · p
p′ . For example, estimating a target proportion half as large as the currently achievable

objective requires twice the sample size. This provides context for predicting the anticipated bene-

fits of increased sampling effort. For instance, one could determine whether sampling 1600 rather

than 800 fish justifies the extra expense by considering the benefits of reducing the minimum es-

timable proportion from 0.03 to 0.015. Note however that these “small p” approximations only

apply within the range of sample sizes and target proportions where p is already “small”. Thus, a

similar approach would underestimate the lost precision resulting from reducing the sample size

from 800 to 400, more so for further reductions. For Objectives 1 and 2, the “small p” approx-

imation applies well for anticipating the benefits of increased sampling beyond 800 fish, but for
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Objective 4 the “small p” approximation requires p1 ≤ 0.02 and does not apply closely unless all

sample sizes under consideration are on the order of 2000 or more.

Thus far, our discussion has centered on the stock composition of the ocean mixed stock ag-

gregate. If, instead, interest is restricted to the stock composition of the landings itself, smaller

sample sizes will suffice. Note however that in this case, obtaining performance equivalent to what

n = 800 provides under binomial sampling may require sampling a large fraction of the landings.

For example, similar performance with respect to Objectives 1–3 would require sampling 44–55%

of the landings for N = 1000, and 62–80% of the landings for N = 500.

Note also that all sample size recommendations in this paper refer to the number of fish success-

fully processed and genotyped. Larger sample collections may be required to account for potential

sample loss, poor tissue preservation, or problems with the genotyping of individual samples. An

additional caveat to the presented sample size targets is that our analysis treats each sampled fish

as having been independently selected in a “simple random” fashion. For the ocean mixed stock

aggregate assessment, this assumption is likely violated by the propensity of fish to school (Burn-

ham and Anderson 1998) and because fishermen tend to fish nonrandomly. Required sample sizes

in the presence of such violations are larger than the sample sizes presented herein. At-sea sam-

pling programs would be expected to violate these assumptions to a larger degree than dock-side

sampling programs, since fewer vessels would be providing the samples, and sampling fractions

for these vessels would likely be higher (or even 100%), exacerbating the likely non-independence

of the individual fish sampled.

A further planning consideration for GSI sampling is that in many cases the stock units of

interest may be a subset of a genetic reporting group. For example, one may need to be able to

estimate the age-specific proportions of a specific population or source river within a particular

reporting group. This finer-scale resolution would be required to use GSI-derived data as an input

for cohort reconstruction, for example (O’Farrell et al. 2012). Thus the stock proportions of interest

for management may be substantially smaller than the stock proportions estimated for genetically-

defined reporting groups. And of course, such estimates would only be possible if individual fish
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were aged as well as genotyped.

This paper has considered estimation of a single stock proportion at a time (or two proportions

for Objective 4, although the proportions may be from distinct strata). Bernard (2007), Bromaghin

(1993), and Thompson (1987) address sample size requirements for a multinomial sampling model.

Required sample sizes for precise simultaneous estimation of multiple proportions may be larger

than required for estimating a single proportion.

We also note that, while estimates of stock composition based on GSI data may be made with

more confidence using mixed stock analysis than with individual fish assignments (Koljonen et al.

2005), an approach based on individual-specific assignments would seem to be necessary when

incorporating auxiliary information such as individual size, age, or fine-scale catch location data.

Finally, we have not addressed the impacts of genetic assignment error in this paper. The ef-

fects of genetic assignment errors on the estimated stock composition are complex. Classification

accuracy varies by stock, but is generally fairly high at the reporting group level of aggregation

(Anderson et al. 2008; Seeb et al. 2007). Nevertheless, low misclassification rates can still result in

biased estimates of stock proportions, particularly when abundant stocks are misidentified as rare

stocks. The magnitude of this bias depends on the resolution of the genetic baseline and the propor-

tions of fish in the mixture. A more thorough exploration of the implications of assignment error

for sample size requirements, or the potential biases introduced by stock-dependent misassignment

probabilities, is beyond the scope of this paper.
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Appendix A Evaluating Objective 1 for k > 1

Objective 1 is that n be sufficient to ensure, with probability Qk, that the sample will contain at

least k fish of the stock of interest. That is, Qk = Prob(Y ≥ k) = 1−Prob(Y < k). Here, we evaluate

this objective for k > 1; the case of simple detection (k = 1) is evaluated in Section 4.1 of the main

text. For binomial sampling, appealing to equation (1)

Qk = 1−
i=k−1

∑
i=0

Prob(Y = i) = 1−
i=k−1

∑
i=0

(
n
i

)
pi(1− p)n−i. (A-1)

For hypergeometric sampling, appealing to equation (3),

Qk = 1−
i=k−1

∑
i=0

Prob(Y = i) = 1−
i=k−1

∑
i=0

(N p
i

)(N(1−p)
n−i

)(N
n

) . (A-2)

An analytical solution of these expressions in terms of n is not available for k > 1, but the required

sample size may be found by searching numerically for the smallest n that satisfies or exceeds

the desired level of Qk using equation (A-1) or (A-2), respectively. Figures A-1 and A-2 show

the n necessary to yield a specified Q5 or Q10, respectively, depending on p, under both binomial

sampling and hypergeometric sampling for select values of N. Clearly, higher values of k require

higher n, for all values of p and Qk. For binomial sampling, a criterion of Q5 = 0.999 for p = 0.01

requires an n of 1475 (Figure A-1), while a criterion of Q10 = 0.999 for p = 0.01 requires an n

of 2259 (Figure A-2). This illustrates that, for fixed Qk, doubling k does not necessarily require

doubling n. However, for Qk = 0.999, halving p from 0.01 to 0.005 does require an approximate

doubling of n for a particular value of k; for k = 5, n = 2954, and for k = 10, n = 4525.

For hypergeometric sampling, as N is reduced so too is the required n, with n approaching N

(100% sampling) for small p. For N = 1000, binomial and hypergeometric sampling require simi-

lar n for p≥ 0.02, but as p approaches 0 the n required under hypergeometric sampling increases

at a much slower rate than for binomial sampling. No contours appear in the Figure A-1 and A-2

N = 100 panels because, in this case, the minimum possible value of p associated with Qk, p = k
N ,
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is p = 0.05 and p = 0.10 for Q5 and Q10, respectively, which is outside the plotted range of p

(except for Q5 with p = 0.05 where Q5 = 1 if n = N = 100).
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Figure A-1. Sample size (contours) required to ensure, with probability Q5, that the sample will contain
at least five fish of the stock of interest, given the stock proportion p. Top-left panel presents results
for binomial sampling; remaining panels give hypergeometric results for total landings of 1000, 500, and
100 fish, respectively. In the hypergeometric panels, p less than the minimum value possible ( 5

N ) for
Q5 are block-shaded in grey, and for contoured values of n the possible (n, p) combinations appear as
black dots connected by line segments. Large dot marks criterion described in the text (Q5 = 0.999 for
p = 0.01). Note that for N = 100 this criterion cannot be satisfied, even for n = N.
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Figure A-2. Sample size (contours) required to ensure, with probability Q10, that the sample will
contain at least ten fish of the stock of interest, given the stock proportion p. Top-left panel presents
results for binomial sampling; remaining panels give hypergeometric results for total landings of 1000,
500, and 100 fish, respectively. In the hypergeometric panels, p less than the minimum value possible
( 10

N ) for Q10 are block-shaded in grey, and for contoured values of n the possible (n, p) combinations
appear as black dots connected by line segments. Large dot marks criterion described in the text
(Q10 = 0.999 for p = 0.01). Note that for N = 500 and N = 100 this criterion cannot be satisfied, even
for n = N.
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